extension | φ:Q→Out N | d | ρ | Label | ID |
(D5×C12)⋊1C22 = S3×D4×D5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 60 | 8+ | (D5xC12):1C2^2 | 480,1097 |
(D5×C12)⋊2C22 = S3×D4⋊2D5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8- | (D5xC12):2C2^2 | 480,1099 |
(D5×C12)⋊3C22 = D30.C23 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8+ | (D5xC12):3C2^2 | 480,1100 |
(D5×C12)⋊4C22 = D20⋊13D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8- | (D5xC12):4C2^2 | 480,1101 |
(D5×C12)⋊5C22 = D20⋊14D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8+ | (D5xC12):5C2^2 | 480,1102 |
(D5×C12)⋊6C22 = D12⋊14D10 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8+ | (D5xC12):6C2^2 | 480,1103 |
(D5×C12)⋊7C22 = S3×Q8⋊2D5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8+ | (D5xC12):7C2^2 | 480,1109 |
(D5×C12)⋊8C22 = D20⋊16D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8- | (D5xC12):8C2^2 | 480,1110 |
(D5×C12)⋊9C22 = D20⋊17D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8+ | (D5xC12):9C2^2 | 480,1111 |
(D5×C12)⋊10C22 = D20⋊26D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 4 | (D5xC12):10C2^2 | 480,1094 |
(D5×C12)⋊11C22 = D20⋊29D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 4+ | (D5xC12):11C2^2 | 480,1095 |
(D5×C12)⋊12C22 = S3×C4○D20 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 4 | (D5xC12):12C2^2 | 480,1091 |
(D5×C12)⋊13C22 = D20⋊24D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 4 | (D5xC12):13C2^2 | 480,1092 |
(D5×C12)⋊14C22 = C3×D4⋊6D10 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 4 | (D5xC12):14C2^2 | 480,1141 |
(D5×C12)⋊15C22 = C3×D4⋊8D10 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 4 | (D5xC12):15C2^2 | 480,1146 |
(D5×C12)⋊16C22 = C2×D12⋊5D5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | | (D5xC12):16C2^2 | 480,1084 |
(D5×C12)⋊17C22 = C2×C12.28D10 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | | (D5xC12):17C2^2 | 480,1085 |
(D5×C12)⋊18C22 = C2×D5×D12 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | | (D5xC12):18C2^2 | 480,1087 |
(D5×C12)⋊19C22 = C2×D6.D10 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | | (D5xC12):19C2^2 | 480,1083 |
(D5×C12)⋊20C22 = S3×C2×C4×D5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | | (D5xC12):20C2^2 | 480,1086 |
(D5×C12)⋊21C22 = D5×C4○D12 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12):21C2^2 | 480,1090 |
(D5×C12)⋊22C22 = C6×D4×D5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | | (D5xC12):22C2^2 | 480,1139 |
(D5×C12)⋊23C22 = C6×D4⋊2D5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | | (D5xC12):23C2^2 | 480,1140 |
(D5×C12)⋊24C22 = C6×Q8⋊2D5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | | (D5xC12):24C2^2 | 480,1143 |
(D5×C12)⋊25C22 = C6×C4○D20 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | | (D5xC12):25C2^2 | 480,1138 |
(D5×C12)⋊26C22 = C3×D5×C4○D4 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12):26C2^2 | 480,1145 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(D5×C12).1C22 = D5×D4⋊S3 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8+ | (D5xC12).1C2^2 | 480,553 |
(D5×C12).2C22 = Dic10⋊3D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8+ | (D5xC12).2C2^2 | 480,554 |
(D5×C12).3C22 = D5×D4.S3 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8- | (D5xC12).3C2^2 | 480,559 |
(D5×C12).4C22 = C60.8C23 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8- | (D5xC12).4C2^2 | 480,560 |
(D5×C12).5C22 = D12⋊10D10 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8- | (D5xC12).5C2^2 | 480,565 |
(D5×C12).6C22 = D12.24D10 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8- | (D5xC12).6C2^2 | 480,566 |
(D5×C12).7C22 = D20.9D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8+ | (D5xC12).7C2^2 | 480,567 |
(D5×C12).8C22 = C60.16C23 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8+ | (D5xC12).8C2^2 | 480,568 |
(D5×C12).9C22 = D5×Q8⋊2S3 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8+ | (D5xC12).9C2^2 | 480,577 |
(D5×C12).10C22 = D20⋊D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8+ | (D5xC12).10C2^2 | 480,578 |
(D5×C12).11C22 = D5×C3⋊Q16 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8- | (D5xC12).11C2^2 | 480,583 |
(D5×C12).12C22 = D20.13D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8- | (D5xC12).12C2^2 | 480,584 |
(D5×C12).13C22 = D12.27D10 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8- | (D5xC12).13C2^2 | 480,589 |
(D5×C12).14C22 = D20.14D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8- | (D5xC12).14C2^2 | 480,590 |
(D5×C12).15C22 = C60.39C23 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8+ | (D5xC12).15C2^2 | 480,591 |
(D5×C12).16C22 = D20.D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8+ | (D5xC12).16C2^2 | 480,592 |
(D5×C12).17C22 = C15⋊2- 1+4 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8- | (D5xC12).17C2^2 | 480,1096 |
(D5×C12).18C22 = D5×D4⋊2S3 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8- | (D5xC12).18C2^2 | 480,1098 |
(D5×C12).19C22 = D20.29D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8- | (D5xC12).19C2^2 | 480,1104 |
(D5×C12).20C22 = C30.33C24 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8+ | (D5xC12).20C2^2 | 480,1105 |
(D5×C12).21C22 = D12.29D10 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8- | (D5xC12).21C2^2 | 480,1106 |
(D5×C12).22C22 = S3×Q8×D5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8- | (D5xC12).22C2^2 | 480,1107 |
(D5×C12).23C22 = D5×Q8⋊3S3 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8+ | (D5xC12).23C2^2 | 480,1108 |
(D5×C12).24C22 = C24⋊D10 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 4+ | (D5xC12).24C2^2 | 480,325 |
(D5×C12).25C22 = D24⋊D5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).25C2^2 | 480,326 |
(D5×C12).26C22 = Dic60⋊C2 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 4- | (D5xC12).26C2^2 | 480,336 |
(D5×C12).27C22 = C24.2D10 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).27C2^2 | 480,337 |
(D5×C12).28C22 = D20.38D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).28C2^2 | 480,1076 |
(D5×C12).29C22 = D20.39D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 4- | (D5xC12).29C2^2 | 480,1077 |
(D5×C12).30C22 = D60⋊C4 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8+ | (D5xC12).30C2^2 | 480,227 |
(D5×C12).31C22 = Dic6⋊F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8- | (D5xC12).31C2^2 | 480,229 |
(D5×C12).32C22 = D12⋊4F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8- | (D5xC12).32C2^2 | 480,231 |
(D5×C12).33C22 = D60⋊2C4 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8+ | (D5xC12).33C2^2 | 480,233 |
(D5×C12).34C22 = Dic6⋊5F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8- | (D5xC12).34C2^2 | 480,984 |
(D5×C12).35C22 = D12.F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8- | (D5xC12).35C2^2 | 480,989 |
(D5×C12).36C22 = Dic6.F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8+ | (D5xC12).36C2^2 | 480,992 |
(D5×C12).37C22 = D60⋊3C4 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 60 | 8+ | (D5xC12).37C2^2 | 480,997 |
(D5×C12).38C22 = D12⋊F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8+ | (D5xC12).38C2^2 | 480,228 |
(D5×C12).39C22 = Dic30⋊C4 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8- | (D5xC12).39C2^2 | 480,230 |
(D5×C12).40C22 = D12⋊2F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8- | (D5xC12).40C2^2 | 480,232 |
(D5×C12).41C22 = D60⋊5C4 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8+ | (D5xC12).41C2^2 | 480,234 |
(D5×C12).42C22 = F5×Dic6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8- | (D5xC12).42C2^2 | 480,982 |
(D5×C12).43C22 = D12.2F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8- | (D5xC12).43C2^2 | 480,987 |
(D5×C12).44C22 = D60.C4 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8+ | (D5xC12).44C2^2 | 480,990 |
(D5×C12).45C22 = F5×D12 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 60 | 8+ | (D5xC12).45C2^2 | 480,995 |
(D5×C12).46C22 = Dic5.Dic6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).46C2^2 | 480,235 |
(D5×C12).47C22 = Dic5.4Dic6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).47C2^2 | 480,236 |
(D5×C12).48C22 = D10.Dic6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8 | (D5xC12).48C2^2 | 480,237 |
(D5×C12).49C22 = D10.2Dic6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8 | (D5xC12).49C2^2 | 480,238 |
(D5×C12).50C22 = C4⋊F5⋊3S3 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).50C2^2 | 480,983 |
(D5×C12).51C22 = S3×C4.F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).51C2^2 | 480,988 |
(D5×C12).52C22 = D15⋊M4(2) | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).52C2^2 | 480,991 |
(D5×C12).53C22 = S3×C4⋊F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 60 | 8 | (D5xC12).53C2^2 | 480,996 |
(D5×C12).54C22 = S3×C8⋊D5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).54C2^2 | 480,321 |
(D5×C12).55C22 = C40⋊D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).55C2^2 | 480,322 |
(D5×C12).56C22 = C40.55D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).56C2^2 | 480,343 |
(D5×C12).57C22 = C40.35D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).57C2^2 | 480,344 |
(D5×C12).58C22 = D20.3Dic3 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).58C2^2 | 480,359 |
(D5×C12).59C22 = D20.2Dic3 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).59C2^2 | 480,360 |
(D5×C12).60C22 = F5×C3⋊C8 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).60C2^2 | 480,223 |
(D5×C12).61C22 = C30.C42 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).61C2^2 | 480,224 |
(D5×C12).62C22 = C30.3C42 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).62C2^2 | 480,225 |
(D5×C12).63C22 = C30.4C42 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).63C2^2 | 480,226 |
(D5×C12).64C22 = (C4×S3)⋊F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).64C2^2 | 480,985 |
(D5×C12).65C22 = S3×D5⋊C8 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).65C2^2 | 480,986 |
(D5×C12).66C22 = C5⋊C8⋊D6 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).66C2^2 | 480,993 |
(D5×C12).67C22 = C4×S3×F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 60 | 8 | (D5xC12).67C2^2 | 480,994 |
(D5×C12).68C22 = D20⋊Dic3 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).68C2^2 | 480,312 |
(D5×C12).69C22 = Dic10⋊Dic3 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).69C2^2 | 480,313 |
(D5×C12).70C22 = Dic10⋊2Dic3 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).70C2^2 | 480,314 |
(D5×C12).71C22 = D20⋊2Dic3 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).71C2^2 | 480,315 |
(D5×C12).72C22 = Dic10.Dic3 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8 | (D5xC12).72C2^2 | 480,1066 |
(D5×C12).73C22 = D4×C3⋊F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 60 | 8 | (D5xC12).73C2^2 | 480,1067 |
(D5×C12).74C22 = D20.Dic3 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8 | (D5xC12).74C2^2 | 480,1068 |
(D5×C12).75C22 = Q8×C3⋊F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).75C2^2 | 480,1069 |
(D5×C12).76C22 = C3×D8⋊D5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).76C2^2 | 480,704 |
(D5×C12).77C22 = C3×D40⋊C2 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).77C2^2 | 480,707 |
(D5×C12).78C22 = C3×SD16⋊D5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).78C2^2 | 480,708 |
(D5×C12).79C22 = C3×Q16⋊D5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).79C2^2 | 480,711 |
(D5×C12).80C22 = C3×Q8.10D10 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).80C2^2 | 480,1144 |
(D5×C12).81C22 = C3×D4.10D10 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).81C2^2 | 480,1147 |
(D5×C12).82C22 = C3×D20⋊C4 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).82C2^2 | 480,287 |
(D5×C12).83C22 = C3×D4⋊F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).83C2^2 | 480,288 |
(D5×C12).84C22 = C3×Q8⋊F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).84C2^2 | 480,289 |
(D5×C12).85C22 = C3×Q8⋊2F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).85C2^2 | 480,290 |
(D5×C12).86C22 = C3×D4.F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8 | (D5xC12).86C2^2 | 480,1053 |
(D5×C12).87C22 = C3×D4×F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 60 | 8 | (D5xC12).87C2^2 | 480,1054 |
(D5×C12).88C22 = C3×Q8.F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 240 | 8 | (D5xC12).88C2^2 | 480,1055 |
(D5×C12).89C22 = C3×Q8×F5 | φ: C22/C1 → C22 ⊆ Out D5×C12 | 120 | 8 | (D5xC12).89C2^2 | 480,1056 |
(D5×C12).90C22 = D5×C24⋊C2 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).90C2^2 | 480,323 |
(D5×C12).91C22 = D5×D24 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4+ | (D5xC12).91C2^2 | 480,324 |
(D5×C12).92C22 = D5×Dic12 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | 4- | (D5xC12).92C2^2 | 480,335 |
(D5×C12).93C22 = C40.31D6 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).93C2^2 | 480,345 |
(D5×C12).94C22 = D24⋊7D5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | 4- | (D5xC12).94C2^2 | 480,346 |
(D5×C12).95C22 = D120⋊C2 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | 4+ | (D5xC12).95C2^2 | 480,347 |
(D5×C12).96C22 = C2×D5×Dic6 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | | (D5xC12).96C2^2 | 480,1073 |
(D5×C12).97C22 = S3×C8×D5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).97C2^2 | 480,319 |
(D5×C12).98C22 = D5×C8⋊S3 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).98C2^2 | 480,320 |
(D5×C12).99C22 = C40.54D6 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).99C2^2 | 480,341 |
(D5×C12).100C22 = C40.34D6 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).100C2^2 | 480,342 |
(D5×C12).101C22 = C2×D5×C3⋊C8 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | | (D5xC12).101C2^2 | 480,357 |
(D5×C12).102C22 = D5×C4.Dic3 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).102C2^2 | 480,358 |
(D5×C12).103C22 = C2×C20.32D6 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | | (D5xC12).103C2^2 | 480,369 |
(D5×C12).104C22 = C3×D5×D8 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).104C2^2 | 480,703 |
(D5×C12).105C22 = C3×D8⋊3D5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).105C2^2 | 480,705 |
(D5×C12).106C22 = C3×D5×SD16 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).106C2^2 | 480,706 |
(D5×C12).107C22 = C3×SD16⋊3D5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).107C2^2 | 480,709 |
(D5×C12).108C22 = C3×D5×Q16 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).108C2^2 | 480,710 |
(D5×C12).109C22 = C3×Q8.D10 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).109C2^2 | 480,712 |
(D5×C12).110C22 = C6×Q8×D5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | | (D5xC12).110C2^2 | 480,1142 |
(D5×C12).111C22 = C120⋊C4 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).111C2^2 | 480,298 |
(D5×C12).112C22 = D5.D24 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).112C2^2 | 480,299 |
(D5×C12).113C22 = C40.Dic3 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).113C2^2 | 480,300 |
(D5×C12).114C22 = C24.1F5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).114C2^2 | 480,301 |
(D5×C12).115C22 = C2×C12.F5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | | (D5xC12).115C2^2 | 480,1061 |
(D5×C12).116C22 = C2×C60⋊C4 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | | (D5xC12).116C2^2 | 480,1064 |
(D5×C12).117C22 = C6×C8⋊D5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | | (D5xC12).117C2^2 | 480,693 |
(D5×C12).118C22 = C3×D20.3C4 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | 2 | (D5xC12).118C2^2 | 480,694 |
(D5×C12).119C22 = C3×D5×M4(2) | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).119C2^2 | 480,699 |
(D5×C12).120C22 = C3×D20.2C4 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).120C2^2 | 480,700 |
(D5×C12).121C22 = C8×C3⋊F5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).121C2^2 | 480,296 |
(D5×C12).122C22 = C24⋊F5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).122C2^2 | 480,297 |
(D5×C12).123C22 = C2×C60.C4 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | | (D5xC12).123C2^2 | 480,1060 |
(D5×C12).124C22 = C60.59(C2×C4) | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).124C2^2 | 480,1062 |
(D5×C12).125C22 = C2×C4×C3⋊F5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | | (D5xC12).125C2^2 | 480,1063 |
(D5×C12).126C22 = (C2×C12)⋊6F5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).126C2^2 | 480,1065 |
(D5×C12).127C22 = C3×C40⋊C4 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).127C2^2 | 480,273 |
(D5×C12).128C22 = C3×D5.D8 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).128C2^2 | 480,274 |
(D5×C12).129C22 = C3×C40.C4 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).129C2^2 | 480,275 |
(D5×C12).130C22 = C3×D10.Q8 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | 4 | (D5xC12).130C2^2 | 480,276 |
(D5×C12).131C22 = C6×C4.F5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | | (D5xC12).131C2^2 | 480,1048 |
(D5×C12).132C22 = C3×D5⋊M4(2) | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).132C2^2 | 480,1049 |
(D5×C12).133C22 = C6×C4⋊F5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | | (D5xC12).133C2^2 | 480,1051 |
(D5×C12).134C22 = C3×D10.C23 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).134C2^2 | 480,1052 |
(D5×C12).135C22 = F5×C24 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).135C2^2 | 480,271 |
(D5×C12).136C22 = C3×C8⋊F5 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | 4 | (D5xC12).136C2^2 | 480,272 |
(D5×C12).137C22 = C6×D5⋊C8 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 240 | | (D5xC12).137C2^2 | 480,1047 |
(D5×C12).138C22 = F5×C2×C12 | φ: C22/C2 → C2 ⊆ Out D5×C12 | 120 | | (D5xC12).138C2^2 | 480,1050 |
(D5×C12).139C22 = D5×C2×C24 | φ: trivial image | 240 | | (D5xC12).139C2^2 | 480,692 |